

Physical Properties are Important

Molecular Weight

State at NTP

Lower Heating value

Density at NTP

MW ratio to air

Normal Boiling Point

Flammability Limits in air 4.1 to 75%

2.002 gm/mol

Gas

120,020 kJ/kg

 0.080 kg/m^3

0.07

- 253 °C

Physical Properties are Important (Continued)

Minimum Ignition Energy

Flame Temperature in air

Flame Visibility in Sunlight

Odor, Color, Taste

 $2x10^{-5}J$

2045 °C

None

None

- High Pressure
- Extremely Cold Temperature
- Fire/Explosion
- Detectability

What's a Poor Firefighter to do?

- Insure that hydrogen systems are built to the most recent codes.
- Insist that the hydrogen systems in the community are fail-safe.
- Know how to use a hydrogen detector.
- Know where to cut.
- When all else fails; protect exposures.

Hydrogen Safety; Basis in Fire Code

- Standard for Gaseous Hydrogen systems at Consumer Sites NFPA 50A 1999 Edition
- Standard for Liquefied Hydrogen systems at Consumer Sites NFPA 50B 1999 Edition
- Compressed Natural Gas (CNG) Vehicular Fuel Systems Code NFPA 52 2002 Edition
- Vehicular Fuel Systems Code NFPA 52
 2002 Edition and 2005(Draft)

Hydrogen Safety Basis in Fire Code (continued)

- Standard for Storage, Use, Handling of Compressed Gases and Cryogenic Fluids in Portable and Stationary Containers, Cylinders and Tanks NFPA 55 2003 and 2005 (Draft)
- Liquefied Natural Gas (LNG) Vehicular Systems Code NFPA 57 2001 Edition

Hydrogen Safety Basis in Fire Code (continued)

- Motor Vehicle Fuel-dispensing Stations
 Article 52 2001 CFC
- Compressed Gases Article 74 2001 CFC
- Cryogenic Fluids Article 75 2001 CFC
- Hazardous Materials Article 80 2001 CFC

Sources of Safety Information

- NASA Glenn Research Center, Glenn
 Safety Manual Chapter 6 "Hydrogen"
- Idaho National Engineering and Environmental Laboratory Report "Safety Issues with Hydrogen as a Vehicle Fuel"